viernes, 23 de noviembre de 2012

Redes Neuronales Artificiales





Las redes de neuronas artificiales (denominadas habitualmente como RNA o en inglés como: "ANN" ) son un paradigma de aprendizaje y procesamiento automático inspirado en la forma en que funciona el sistema nervioso de los animales. Se trata de un sistema de interconexión de neuronas en una red que colabora para producir un estímulo de salida. En inteligencia artificial es frecuente referirse a ellas como redes de neuronas o redes neuronales.


Propiedades


Una red neuronal se compone de unidades llamadas neuronas. Cada neurona recibe una serie de entradas a través de interconexiones y emite una salida. Esta salida viene dada por tres funciones:

1. Una función de propagación (también conocida como función de excitación), que por lo general consiste en el sumatorio de cada entrada multiplicada por el peso de su interconexión (valor neto). Si el peso es positivo, la conexión se denomina excitatoria; si es negativo, se denomina inhibitoria.

2. Una función de activación, que modifica a la anterior. Puede no existir, siendo en este caso la salida la misma función de propagación.

3. Una función de transferencia, que se aplica al valor devuelto por la función de activación. Se utiliza para acotar la salida de la neurona y generalmente viene dada por la interpretación que queramos darle a dichas salidas. Algunas de las más utilizadas son la función sigmoidea (para obtener valores en el intervalo [0,1]) y la tangente hiperbólica (para obtener valores en el intervalo [-1,1]).




Ventajas



Las redes neuronales artificiales (RNA) tienen muchas ventajas debido a que están basadas en la estructura del sistema nervioso, principalmente el cerebro.

·         Aprendizaje: Las RNA tienen la habilidad de aprender mediante una etapa que se llama etapa de aprendizaje. Esta consiste en proporcionar a la RNA datos como entrada a su vez que se le indica cuál es la salida (respuesta) esperada.

·         Auto organización: Una RNA crea su propia representación de la información en su interior, descargando al usuario de esto.

·         Tolerancia a fallos: Debido a que una RNA almacena la información de forma redundante, ésta puede seguir respondiendo de manera aceptable aun si se daña parcialmente.

·         Flexibilidad: Una RNA puede manejar cambios no importantes en la información de entrada, como señales con ruido u otros cambios en la entrada (por ejemplo si la información de entrada es la imagen de un objeto, la respuesta correspondiente no sufre cambios si la imagen cambia un poco su brillo o el objeto cambia ligeramente).

·         Tiempo real: La estructura de una RNA es paralela, por lo cual si esto es implementado con computadoras o en dispositivos electrónicos especiales, se pueden obtener respuestas en tiempo real.



Aprendizaje


Una segunda clasificación que se suele hacer es en función del tipo de aprendizaje de que es capaz (si necesita o no un conjunto de entrenamiento supervisado). Para cada tipo de aprendizaje encontramos varios modelos propuestos por diferentes autores:

·         Aprendizaje supervisado: necesitan un conjunto de datos de entrada previamente clasificado o cuya respuesta objetivo se conoce. Ejemplos de este tipo de redes son: el perceptrón simple, la red Adaline, el perceptrón multicapa, red backpropagation, y la memoria asociativa bidireccional.

·         Aprendizaje no supervisado o autoorganizado: no necesitan de tal conjunto previo. Ejemplos de este tipo de redes son: las memorias asociativas, las redes de Hopfield, la máquina de Boltzmann y la máquina de Cauchy, las redes de aprendizaje competitivo, las redes de Kohonen o mapas autoorganizados y las redes de resonancia adaptativa (ART).

·         Redes híbridas: son un enfoque mixto en el que se utiliza una función de mejora para facilitar la convergencia. Un ejemplo de este último tipo son las redes de base radial.

·         Aprendizaje reforzado: se sitúa a medio camino entre el supervisado y el autoorganizado.




Aplicaciones


Las características de las RNA las hacen bastante apropiadas para aplicaciones en las que no se dispone a priori de un modelo identificable que pueda ser programado, pero se dispone de un conjunto básico de ejemplos de entrada (previamente clasificados o no). Asimismo, son altamente robustas tanto al ruido como a la disfunción de elementos concretos y son fácilmente paralelizables.

Esto incluye problemas de clasificación y reconocimiento de patrones de voz, imágenes, señales, etc. Asimismo se han utilizado para encontrar patrones de fraude económico, hacer predicciones en el mercado financiero, hacer predicciones de tiempo atmosférico, etc.

También se pueden utilizar cuando no existen modelos matemáticos precisos o algoritmos con complejidad razonable, por ejemplo la red de Kohonen ha sido aplicada con un éxito más que razonable al clásico problema del viajante (un problema para el que no se conoce solución algorítmica de complejidad polinómica).

Otro tipo especial de redes neuronales artificiales se ha aplicado en conjunción con los algoritmos genéticos (AG) para crear controladores para robots. La disciplina que trata la evolución de redes neuronales mediante algoritmos genéticos se denomina Robótica Evolutiva. En este tipo de aplicación el genoma del AG lo constituyen los parámetros de la red (topología, algoritmo de aprendizaje, funciones de activación, etc.) y la adecuación de la red viene dada por la adecuación del comportamiento exhibido por el robot controlado (normalmente una simulación de dicho comportamiento).



No hay comentarios:

Publicar un comentario